
TimeFuseDB: A Uni-Temporal Database using
FUSE (Filesystem in User Space)

THESIS

Submitted in Partial Fulfillment of

the Requirements for

the Degree of

MASTER OF SCIENCE (Computer Science)

at the

NEW YORK UNIVERSITY

TANDON SCHOOL OF ENGINEERING

by

Aniket Ray

May 2025

TimeFuseDB: A Uni-Temporal Database using
FUSE (Filesystem in User Space)

THESIS

Submitted in Partial Fulfillment of

the Requirements for

the Degree of

MASTER OF SCIENCE (Computer Science)

at the

NEW YORK UNIVERSITY

TANDON SCHOOL OF ENGINEERING

by

Aniket Ray

May 2025

Approved:

Department Chair Signature

Date

University ID: N17957996

Net ID: ar8431

ii

Approved by the Guidance Committee:

Major: Computer Science

Dr. Kamen Yotov
Adjunct Professor in Computer Science

Date

iii

Vita

Aniket Ray, born on September 11, 1998, in Asansol, West Bengal, India, holds

a Bachelor of Technology (B.Tech) degree in Computer Science and Engineering

from the National Institute of Technology (NIT), Durgapur. Prior to commencing

his graduate studies at New York University (NYU) in 2023, he gained significant

professional experience with the Mediapipe team at Google, Inc., and as a Software

Engineer at Oracle Corporation. He is expected to complete his Master of Science

degree in May 2025. The research presented in this thesis was conducted under the

guidance of Dr. Kamen Yotov between January 2024 and March 2025.

iv

ABSTRACT

TimeFuseDB: A Uni-Temporal Database using

FUSE (Filesystem in User Space)

by

Aniket Ray

Advisor: Assistant Prof. Dr. Kamen Yotov, Ph.D.

Submitted in Partial Fulfillment of the Requirements for

the Degree of Master of Science (Computer Science)

May 2025

This thesis presents TimeFuseDB, a file system architecture that integrates

content-addressable storage with temporal versioning capabilities through a virtual

file system interface. TimeFuseDB addresses the challenge of accessing historical

versions of data while maintaining the familiar interface of a traditional file system.

By employing efficient content hashing techniques and structured metadata storage,

the system enables time-based querying of repository content via a regular file

system interface.

v

Contents

Vita . iii

Abstract . iv

List of Figures . vii

1 Introduction 1

2 Background 3

2.1 Temporal Data . 3

2.2 Content based addressing . 5

3 Components 7

3.1 Crawler . 7

3.2 File System . 10

4 Use Cases 14

4.1 User-Friendly Temporal data Navigation 14

4.2 Management of Financial Configurations 15

4.3 Historical Securities Data Navigation 15

5 Conclusions and Future Work 17

vi

A Example Usage 19

A.1 Repository and Code Setup . 19

A.2 Building the Project . 20

A.3 Running the System . 21

vii

List of Figures

3.1 Flowchart for crawler . 8

3.2 Sample internal structure of a TimeFuseDB file-system 11

3.3 A flow-chart diagram showing how FUSE works 13

1

Chapter 1

Introduction

Time is an essential dimension in understanding the evolution of data, yet

traditional file systems and version control interfaces often obscure the temporal

narrative of changes. This thesis introduces an innovative approach to representing

temporal data by leveraging Filesystem in Userspace (FUSE) to expose the

history of a git repository in an intuitive, navigable format. By integrating a

custom crawler that traverses a git repository and extracts key metadata, this

work constructs a virtual file system where each directory snapshot is labeled

with a Unix epoch timestamp. This design enables users to “go back in time”

seamlessly—simply by executing a command at the mounted directory such as

‘cd TIMESTAMP-<UNIX EPOCH TIME>’—to explore the state of the repository as it

existed at any specific moment.

The novelty of this solution lies in its departure from conventional git interfaces.

Traditional git operations depend on abstract commit logs and complex command

sequences to reconstruct past states, which can be un-intuitive and cumbersome.

In contrast, the proposed system offers a concrete, directory-based representation

2

of a repository’s evolution. This extension of git’s capabilities not only simplifies

temporal navigation but also provides a more accessible and tangible perspective

on how data evolves over time, thereby enhancing tasks such as code auditing,

financial analysis, and many other applications.

By re-imagining the navigation of historical data as a tangible, file system-

based experience, this work bridges the gap between abstract version control

operations and user-friendly temporal data exploration, significantly extending how

git functions in practical, everyday use.

At the core of the system is a custom crawler designed to traverse a git

repository and build a detailed representation of its commit history. The crawler

processes each commit by extracting metadata and populating a SQLite database

that serves as the backbone for mapping the temporal evolution of data. Instead of

directly copying files from the repository, the system computes the XXH128 hash for

each file and stores them in a designated directory using a content-based addressing

scheme. Custom object files are generated alongside; these objects act as pointers

linking to other directories, thereby enabling the dynamic assembly of the file

system structure.

The combined data—sourced from the SQLite database and the commit his-

tory—is then leveraged by FUSE. FUSE mounts a virtual file system at a specified

location on the host system, dynamically reconstructing the repository’s state as

it existed at any given Unix epoch timestamp. In addition to allowing users to

“go back in time,” the system supports intuitive browsing of the commit history

through a seamless, directory-based interface.

3

Chapter 2

Background

2.1 Temporal Data

Temporal data refers to information that evolves over time, capturing the history

of changes to ensure both past and present states of the data are available. It

serves as a critical aspect of modern data management, especially in domains where

historical tracking and accurate timelines are essential. Temporal data can be

categorized into various models based on the number of time dimensions it tracks.

It is common to consider a single time dimension (uni-temporal), but having two

time dimensions (bi-temporal) is not unusual, and in rare instances, more than two

time dimensions are utilized.

2.1.1 Uni-temporal Data

Uni-temporal data involves tracking changes along a single time dimension.

This time axis can represent either system time or valid time. System time

records when changes are made in the database, offering a precise audit trail of

4

updates as they happen. Alternatively, the valid time represents the period during

which the data is considered accurate in the real world context. By focusing on

one timeline, uni-temporal data provides a simplified framework for maintaining

historical records. It is particularly useful in scenarios where tracking corrections

or maintaining multiple timelines is unnecessary. For example, in financial markets,

uni-temporal models can monitor stock reference data—such as changes in the S&P

500 composition, adjustments to market capitalization, stock splits, and dividend

announcements—by recording each event with a system timestamp, thereby creating

a clear, chronological audit trail without the complexity of multiple time dimensions.

The simplicity of uni-temporal data makes it easy to implement. Its scope is

limited to scenarios where only one temporal perspective is needed. Systems that

require the flexibility to correct past data or distinguish between system-recorded

changes and real-world validity would find uni-temporal data insufficient.

2.1.2 Bi-temporal Data

Bi-temporal data expand the concept of uni-temporal data by incorporating one

more time dimensions: system time and valid time. This dual timeline approach

allows the system to distinguish between when a record was entered into the database

and when it is valid in the real world. The additional dimension enables a richer

and more flexible historical tracking mechanism, accommodating scenarios where

corrections or backdated changes are common. For example, in a financial system,

bi-temporal data can record corporate actions—such as dividend announcements,

stock splits, or mergers—by tracking both the event’s effective date in the market

and the timestamp when it was recorded in the system, thereby ensuring precise

historical analysis and robust audit trails for regulatory compliance.

5

The ability to correct past records without losing the original context is a key

advantage of bi-temporal data. It supports the seamless integration of retrospective

updates and provides a transparent view of “what was known when” and “what was

true when.” This makes it ideal for regulatory compliance, legal accountability, and

complex data systems. However, the added complexity of managing two timelines

requires more storage, processing power, and careful query design.

2.2 Content based addressing

Content-based addressing is a method of accessing and identifying data based

on its content rather than its physical or logical location. In this approach, each

piece of data is assigned a unique identifier derived directly from the data’s content,

often using a cryptographic hash-function like SHA-256. The resulting hash value

acts as a fingerprint for the data, ensuring that any change in the content produces

a new distinct identifier.

This technique is particularly useful in systems that prioritize data integrity,

immutability, and efficient storage. Since the identifier depends solely on the

content, any modifications to the data result in the creation of a new version with

a new hash. This immutability is a key characteristic that ensures that the stored

data remain unchanged unless explicitly replaced.

Content-based addressing is also highly effective for de-duplication. Identical

content across multiple files or objects will generate the same hash, allowing systems

to store a single instance of the data while referencing it multiple times. This

approach is widely used in distributed systems and content-addressable storage

(CAS) to enhance efficiency, ensure data consistency, and verify integrity by verifying

6

that the content matches its hash-based identifier.

We have successfully employed content-based addressing in our project. By

leveraging this method, we ensure that data modifications are handled immutably,

with each change creating a new version while retaining a verifiable history of all

prior states. This has allowed us to implement precise tracking of data evolution

over time and enabling robust querying capabilities. Content-based addressing has

been instrumental in achieving both efficiency and reliability in our file system

design.

7

Chapter 3

Components

3.1 Crawler

To facilitate efficient indexing and retrieval of git repository data, we developed

a custom crawler designed to traverse the commit history and recursively process

directory structures. The crawler leverages the libgit2[?] library for interacting

with git repositories and employs the xxHash[?] library for rapid hashing of

files. The primary goal of this crawler is to generate structured metadata and

content addressable storage suitable for integration with virtual file systems, such

as the one implemented later using FUSE.

3.1.1 Commit History Traversal

The crawler initiates its operation by traversing the commit history of the repos-

itory’s primary branch (main or master). Utilizing libgit2[?], it iteratively

accesses each commit, extracting the commit identifier and associated directory

tree. For each commit, the crawler processes the directory structure recursively,

8

Figure 3.1: Flowchart for crawler

9

ensuring comprehensive coverage of the repository’s historical states.

3.1.2 Recursive Directory and File Processing

During traversal, the crawler systematically processes each directory and file

encountered. For files, it computes a unique hash using the xxHash[?], chosen

specifically for its exceptional speed and efficiency in hashing large datasets. Each

hashed file is then copied into a dedicated content directory, named according to its

computed hash, thereby preventing duplication and facilitating rapid retrieval. For

directories, the crawler generates a custom plain text directory object, which

enumerates all immediate child files and subdirectories. Each entry within this

directory object adheres to the following structured format:

filename|hash|0 (for files)

dirname|hash|1 (for directories)

Once generated, the directory object itself is hashed using xxHash[?], and

the resulting hash serves as the unique identifier for the directory. This recursive

hashing approach ensures that directory structures are accurately represented and

efficiently retrievable.

3.1.3 Metadata Storage and Management

To facilitate efficient querying and retrieval, the crawler stores metadata (spe-

cially the commit ids) in an SQLite database (fs.sqlite). The database schema

includes essential fields such as commit id, directory hashes, and relative paths

from the repository root. This structured metadata storage enables fast lookups

and supports retrieval operations.

10

3.1.4 Highlighted Features

The crawler’s design offers these advantages:

- Performance: Leveraging xxHash[?] ensures fast-hashing performance,

particularly beneficial when processing large repositories or extensive commit

histories.

- De-duplication: Storing files and directories based on their hashes inherently

prevents duplication, optimizing storage utilization.

3.2 File System

The file system in TimeFuseDB is a critical component that integrates content-

addressable storage (CAS) with temporal versioning, enabling efficient and transpar-

ent access to historical data. Built on top of FUSE, the system provides a virtual

file system interface that allows users to interact with versioned content as if it

were part of a traditional file system.

The CAS structure organizes files and directories into a sharded directory struc-

ture based on the first two characters of their hash. This approach optimizes file

system performance by distributing files across multiple subdirectories, reducing

the likelihood of performance bottlenecks caused by large numbers of files in a

single directory.

TimeFuseDB introduces a temporal dimension to the file system, allowing users

to access content as it existed at specific points in time. This is achieved through

timestamp-based path resolution. For example, a path containing a timestamp

pattern (TIMESTAMP-<epoch time>) is interpreted as a request to retrieve the state

11

Figure 3.2: Sample internal structure of a TimeFuseDB file-system

12

of the file system at the specified time. The system performs a reverse lookup in

the SQLite database to identify the corresponding content hash for the requested

timestamp.

3.2.1 FUSE Implementation

FUSE, or File System in User Space, is a software interface that allows us to

create and run fully functional file systems in user space rather than kernel space.

This approach simplifies the process of file system development by enabling custom

implementations without requiring kernel modifications. The architecture of FUSE

consists of two primary components: a kernel module and a user-space application.

The kernel module serves as an intermediary, forwarding system calls, such as open,

read, and write, to the user-space file system. The user-space application, often

using the libfuse[?] library, implements the core file system logic and handles

operations like file and directory management.

The FUSE operations dynamically resolve paths, retrieve metadata, and access

content based on the requested version or timestamp. For instance, the readdir

operation processes directory objects stored in the CAS to populate the directory

listing. Directory objects are plaintext files that list the names, hashes, and types

(file or directory) of their child elements. This design ensures that directory listings

are dynamically generated based on the current or historical state of the file

system.

To improve performance, TimeFuseDB employs an in-memory path cache that

maps file paths to their corresponding content hashes and entry types (file or

directory). This reduces the overhead of repeated database queries for frequently

accessed paths.

13

Figure 3.3: A flow-chart diagram showing how FUSE works
[?]

14

Chapter 4

Use Cases

4.1 User-Friendly Temporal data Navigation

Users typically have well-developed skills for navigating traditional file systems

using familiar tools and interfaces. In contrast, conventional version control systems

like git introduce a significant learning curve due to their reliance on complex

command sequences. TimeFuseDB addresses this difficulty by exposing temporal

data directly through a familiar file system interface, allowing users to intuitively

explore historical states of data without having to learn specialized versioning

commands or data access patterns.

15

4.2 Management of Financial Configurations

In computational finance, model weights and configuration parameters are

adjusted frequently—often daily or even multiple times per day—to adapt to

rapidly changing market conditions. Regression testing of new models is crucial, as

it enables practitioners to assess how these models would have performed under

historical scenarios, sometimes requiring simulations that span multiple years of data.

Accurately capturing the temporal evolution of these financial parameters is essential

for high-fidelity simulations. TimeFuseDB addresses this need by automatically

preserving every change in model weights and configuration settings over time.

Its temporal file system interface lets users explore historical configurations as if

browsing a traditional directory structure. This intuitive access eliminates the

complexity of specialized database queries or version control commands while

ensuring that every modification is reliably recorded for comprehensive backtesting

and analysis.

4.3 Historical Securities Data Navigation

Financial securities evolve over time due to corporate actions such as mergers,

stock splits, and other restructuring events that typically occur on trading day

boundaries. When analyzing a security’s long-term performance, it is critical

to reference the correct version corresponding to the precise dates of interest.

Traditionally, such dynamic historical data is managed with bi-temporal databases

that record both effective dates and recording timestamps, but interfacing with

these systems often demands specialized expertise and complex queries. While

TimeFuseDB is currently designed as a uni-temporal system, its architecture offers

16

a promising foundation for future extension to support two time dimensions. By

adapting TimeFuseDB to manage both effective and recorded time, users could

intuitively navigate historical securities data through a familiar file system interface.

17

Chapter 5

Conclusions and Future Work

- Enhancing Configurability and Usability: Currently, configuration of

TimeFuseDB demands modification of source code files (e.g., .cpp files). A

significant future improvement is the development of a user-friendly and

flexible configuration mechanism, such as dedicated configuration files or

graphical user interfaces.

- Improving Date and Time Format Handling: Providing comprehen-

sive support for various date and time formats can substantially improve

the system’s versatility and practical utility. Additional research could be

conducted to integrate more standardized date-time representations, locale-

specific formats, and enhanced temporal querying capabilities, thus improving

user experience across diverse domains.

- Maturing TimeFuseDB into a Production-Ready, Open-Source Prod-

uct: Transitioning from a research prototype into a polished, open-source

solution is an important next step. Achieving this involves rigorous testing,

detailed documentation, ease of installation, and robust error handling. Open-

18

sourcing the project will also encourage community engagement, external

contributions, and real-world validation of its practical value.

- Extending to Support Bi-temporal Data: While the current design

focuses on uni-temporal data management, a valuable future direction is

extending TimeFuseDB to support multiple time dimensions (e.g., bi-temporal

data). Adding a second temporal dimension (valid time in addition to

system time) will enable more sophisticated historical tracking and auditing,

particularly useful in fields like finance and regulatory compliance.

- Interface Improvement: A compelling future application of this file system-

based approach is to innovate within the version control domain, potentially

replacing traditional git front-ends. Given that git’s user experience is often

criticized for complexity and steep learning curves, re-imagining version control

through TimeFuseDB’s intuitive directory-based interface could markedly

enhance usability, representing a transformative shift in how users interact

with historical versions of data.

- Serve git’s internal DB: A promising direction for future work is to

enhance TimeFuseDB by directly serving git’s native database with FUSE

without duplicating data into a separate content-addressable store. This

approach would significantly reduce storage and computational overhead.

19

Appendix A

Example Usage

This provides a detailed, step-by-step instructions for setting up and using the

system. Note that TimeFuseDB currently operates on Linux or macOS platforms

where FUSE is supported.

A.1 Repository and Code Setup

1. Clone the Repository:

Begin by cloning the TimeFuseDB repository from GitHub:

> $ git clone https://github.com/aniket-ray/TimeFuseDB.git

Then, navigate into the repository directory:

> $ cd TimeFuseDB

20

2. Edit the Configuration File:

Open the file common.cpp with your preferred text editor. For example, using

vim:

> $ vim common.cpp

Important Configuration Steps:

- ROOT DIR: Modify this path to point to your target git repository—the

repository whose commit history you wish to analyze.

- CONTENT PATH: Change this to an empty directory where the system will

store files using their computed hashes.

A.2 Building the Project

After configuring the source files, compile the project by following these steps:

1. Create a build directory:

> $ mkdir build

2. Change into the build directory and generate build files using CMake:

> $ cd build && cmake ..

3. Compile the project using make:

21

> $ make

This process generates two executables: crawler and TimeFuseDB.

A.3 Running the System

1. Execute the Crawler:

Run the crawler to process your git repository. This step will:

• Traverse the repository and extract the commit history.

• Populate the SQLite database with metadata detailing the repository’s

evolution.

• Compute the XXH128 hash for each file and store the file in the directory

specified in CONTENT PATH.

Execute the crawler with:

> $./crawler

Monitor the terminal output to follow the crawling progress.

2. Mount the Virtual File System:

Once the crawling process is complete, use the TimeFuseDB executable to

mount the virtual file system. The -f flag specifies the mount point on your

host system:

22

> $./TimeFuseDB -f /path/to/your/mount/directory

FUSE dynamically generates the file system structure based on the SQLite

database and the git commit history. The mounted file system recreates the

state of the repository at various Unix epoch timestamps.

3. Browsing the Commit History:

Within the mounted directory, we will find folders with the commit hashes.

These directories represent commits of the repository. To inspect the state of

the repository at a particular EPOCH (say 1618033988) navigate to the root

the mounted file-system and run:

> $ cd TIMESTAMP-1618033988

This navigation allows us to easily browse the historical state of your repository

as maintained by the system.

23

Bibliography

[1] D. Mastromatteo, “Writing a fuse filesystem in python,” The Python

Corner, 02 2017. [Online]. Available: https://thepythoncorner.com/posts/

2017-02-27-writing-a-fuse-filesystem-in-python/

[2] libgit2, “Github - libgit2/libgit2: A cross-platform, linkable library

implementation of git that you can use in your application.” GitHub, 05 2024.

[Online]. Available: https://github.com/libgit2/libgit2

[3] “libfuse/libfuse,” GitHub, 05 2021. [Online]. Available: https://github.com/

libfuse/libfuse

[4] “File:fuse structure.svg - wikimedia commons,” Wikimedia.org, 11 2007. [Online].

Available: https://commons.wikimedia.org/wiki/File:FUSE structure.svg

[5] Y. Collet, “Github - cyan4973/xxhash: Extremely fast non-cryptographic

hash algorithm,” GitHub, 07 2023. [Online]. Available: https://github.com/

Cyan4973/xxHash

